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The container geometry’s effect on flow patterns that form near the onset of interfacial-driven convection
were studied. Numerical studies indicate that the flow patterns at the onset of convection should be steady,
while experiments showeda dynamic switching between two different flow patterns, or modes. This phenom-
enon is a function of the container’s radius over height~aspect ratio!, and it is believed to result from the
coexistence of energy states. Unsteady convection has significant implications in liquid encapsulated crystal
growth where the aspect ratios are ever changing due to the solidification process.@S1063-651X~96!50510-6#

PACS number~s!: 47.27.2i, 47.54.1r

Liquid encapsulated crystal growth is a process where the
aspect ratios are ever changing due to solidification. Fluid
convection in the melt that is associated with this growth is
caused by density and interfacial tension gradients. It is
therefore useful to understand the effect of lateral boundaries
on the flow pattern that arises when interfacial and gravity
driven convection are present. In this study an unusual and
interesting phenomenon has been uncovered, manifested by
a dynamic switching between two different flow patterns or
modes.

A liquid layer with a free surface, subject to a thermal
gradient can convect by two principal mechanisms. The first
process is buoyancy or Rayleigh@1# convection, while the
second type of thermally induced convection is interfacial
tension driven or Marangoni convection@2#. Imagine a
closed container of fluid initially at a quiescent state. When a
vertical temperature difference is applied across the fluid
layer, the fluid remains in a static state until the temperature
difference reaches a critical or bifurcation point. At the bi-
furcation point, the fluid begins to convect and forms a par-
ticular pattern. The pattern that is formed is a function of the
container’s radius over height~aspect ratio!. A review of
recent works on the Rayleigh-Marangoni-Be´nard convection
is given by Davis@3# and Lebon@4#.

Studies in pattern formation are often performed far past
the onset condition into deeply nonlinear regimes. Nonethe-
less, curious behavior may be obtained in a careful and sys-
tematic study using linear analytical tools near the onset of
convection.

Table I gives the critical Marangoni number for azimuthal
modes 0, 1, 2, and 3 for two different aspect ratios, 1.5 and
2.5. The Marangoni numbers were calculated from the lin-
earized Boussinesq equations in a cylindrical geometry. The
liquid was bounded on the vertical sides by a rigid, no slip
side wall. The lower surface was rigid and assumed to be at
a constant temperature. The upper surface was in contact
with a passive gas and surface deflections were assumed neg-
ligible. Note that the linearized Boussinesq equations are in-
dependent of the Prandtl number as it is scaled into the tem-
perature. For every calculation performed with this model,
the largest eigenvalue was found to be real; that is, the fluid
did not oscillate at the onset of convection.

Each mode in Table I represents a different flow pattern.

For example,m50 represents the ‘‘toroidal’’ flow pattern
~Fig. 1!. The mode which has the smallest Marangoni num-
ber will be the mode which is present at the onset of convec-
tion. The calculation in Table I reveals that them50 or
toroidal flow should be expected at an aspect ratio of 1.5. It
is important to note the difference between the smallest~i.e.,
critical! Marangoni number and the next smallest. For the 1.5
aspect ratio, the difference is quite large about 12%. For the
2.5 aspect ratio, the difference between the first mode,
m50, and the next mode,m52, is quite small, about 1.5%.
This difference becomes important experimentally when one
tries to resolve which flow pattern is present at the onset of
convection. In special cases, two modes coexist at the small-
est Marangoni number. These points are known as
codimension-two points. The 2.5 aspect ratio is near a
codimension-two point. The linearized instability calcula-
tions near the codimension-two points for Marangoni@5# and
Rayleigh@6# convection indicate that only one steady pattern
should be seen, but not both.

The prime motivation for this study was to investigate the
pattern behavior close to a codimension-two point where a
change in pattern was expected as the system crossed the
critical location. To further investigate the codimension-two
point experimentally, a single liquid layer of 100 cS~where
1 S51 cm2/s! silicone oil with an upper air gap was placed
between two conductive plates. The upper plate consisted of
zinc selenide, which is transparent to infrared radiation in the
8 to 12mm range. Precautions were taken to ensure that the
temperature was uniform across both upper and lower plates.
A temperature difference was imposed between the two
plates. This difference was increased in a quasisteady fashion
until the fluid began to convect and exhibited a pattern. The

TABLE I. Critical Marangoni numbers associated with each
mode for aspect ratios@~radius!/~height!# of 1.5 and 2.5@5#.

Mode 1.5 Aspect ratio 2.5 Aspect ratio

0 90.45 69.37
1 101.3 70.84
2 112.02 70.41
3 129.81 72.98
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standard deviation, due to temperature control, was under
2% of the imposed temperature difference. The depth of the
silicone oil was 5.0 mm and the air gap was 11.2 mm for all
the experiments reported here. This system gives a ratio of
the Rayleigh~Ra! to Marangoni~Ma! number around 4.6.
The flow visualization technique used an infrared~IR! cam-
era to measure the temperature field of the upper liquid sur-
face. The IR camera was placed above the apparatus and
viewed down upon the surface. As IR radiation is readily
absorbed by silicone oil, the radiation detected by the camera
was only from the very upper layer of the silicone oil.

The first experiments used an aspect ratio of 1.5. The flow
pattern predicted to be seen from numerical calculations in
Table I, is a toroidal flow. The toroidal flow shows fluid
rising up from the center, moving radially across the top of
the surface, and then falling down the sides of the container.
Indeed, as seen in Fig. 1, the IR camera captured this flow
pattern at the onset of convection. Further moderate in-
creases in temperature difference did not change the flow
pattern.

The second set of experimental runs used an aspect ratio
of 2.5, which is near a codimension-two point. Again the
temperature difference was increased until fluid convection
was seen near the predicted critical value. The first pattern
seen was the toroidal flow. The temperature difference was
increased and then held constant, within experimental error,
for several hours. After a few minutes, the flow patterns
started to transform into a dynamic state and maintained this
state for as long as the temperature difference was held fixed.
The period of the oscillations was constant and was seen to
be about one fourth of the horizontal thermal diffusive time
constant~92 min!, and about seven times the vertical thermal
diffusive time constant. This experiment was reproduced and
verified several times.

Figure 2 depicts snapshots of the flow pattern at an aspect
ratio to the left of a codimension-two point. Additional ex-
periments were also performed for a slightly larger aspect
ratio of 2.6, where the pattern observed at the onset of con-
vection was different from the 2.5 aspect ratio. The pattern

FIG. 1. An infrared image of the toroidal flow
pattern in a cylindrical container. The radius over
height aspect ratio is 1.5. The cooler fluid is col-
ored purple and the hotter fluid green. The hotter
fluid is 1.5 °C hotter than the cooler fluid.

FIG. 2. Time sequenced infrared images showing
the switching between flow patterns. The aspect ratio is
2.5 and to the left of a codimension-two point. The
yellow-red color signifies the hotter fluid and the
purplish-blue is the cooler fluid which is 2 °C cooler.
The flow patterns start as anm52 flow with two cells
~a!. One of the cells increases in size, trying to form the
toroidal flow ~b!. In doing so, it eliminates the other
cell. Before the toroidal pattern forms completely, it
splits, like an amoebae, into two cells~c!. These two
cells shift into the two cell formation seen in part a
offset by 90°~d!. Before this cell achieves a complete
toroidal flow ~e!, it too splits into two cells. The two
cells shift and arrive at the exact flow pattern seen in~a!
~f!. As long as the temperature difference is held con-
stant, the dynamic state of convection cells growing and
splitting continues and repeats itself with a regular time
interval.
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appeared as a steady superposition ofm52 and a double
concentric toroidal pattern. Pattern formations near
codimension-two points have been observed@6# in pure
buoyancy flows in containers. It was observed there that the
mode switching did not occur at a codimension-two point.
This study reveals that codimension-two points lead to dy-
namic pattern switching in a cylindrical container near the
onset where interfacial or Marangoni forces are present.
Similar work @7# has been done where pattern switching has
been observed in square containers and is attributed to a
Takens-Bogdanov bifurcation that is associated with
codimension-two points.

A closer look at Fig. 3, which is a schematic of a
codimension-two point, may reveal why the flow pattern
switches between different modes. Self-excited perturbations
in temperature will cause the fluid to remain in a dynamic
state of mode switching. For codimension-two points that
may occur at smaller aspect ratios, the angle between the
lines of constant flow pattern is considerably larger. It is
much more difficult to place the system such that small per-
turbations in the temperature difference will cause the flow
pattern to switch from one mode to another.

Theoretical work has been performed to describe weakly
nonlinear behavior around codimension-two points. For ex-
ample, Erneux and Reiss@8# looked at codimension-two
points for supercritical bifurcations. They noted that when
the supercritical bifurcation was symmetric, and no imper-
fection was introduced, the steady solutions would branch

off into a secondary solution as the bifurcation parameter
was increased, but the secondary solution would always be
steady. However, they showed that when an imperfection to
the base state was introduced, Hopf bifurcations to a second-
ary solution were possible. Rosenblat, Davis, and Homsy@9#
performed a weakly nonlinear analysis for the pure Ma-
rangoni problem; that is, they neglected buoyancy effects. In
their analysis they showed that for am50 and m51
codimension-two point, it was possible for Hopf bifurcations
to occur. However for them50, m52 codimension-two
points, they did not find a Hopf bifurcation. It is important to
note the many differences between their paper and the physi-
cal experiment, the most important being the lack of gravi-
tational effects and the assumption of an unphysical, vortic-
ity free sidewall boundary condition. This condition will
cause the modes to unfold in a different order than what is
observed in the experiment: the vorticity free sidewall gen-
eratesm51, m52, m50 modes as the aspect ratio is in-
creased, whereas the no slip sidewall@5# hasm51, m50,
m52 modes as the aspect ratio is increased. Echebarrı´a,
Krmpotic, and Pe´rez-Garcı´a @10# also found oscillatory mode
interactions when they took into account the Rayleigh or
gravitational effects. However, their work only concentrated
on them51,m52 mode interactions.

In this study we were definitely able to show the existence
of a codimension-two point by both linearized calculations
and by performing experiments. The experiments showed the
onset of a different pattern on each side of the codimension-
two point. Weakly nonlinear analysis has shown that
codimension-two points can lead to Hopf bifurcations or os-
cillatory states. The computed critical Marangoni number
and the predicted flow pattern were found to agree well with
the experimental results. This study has implications in crys-
tal growth, where multiple mode interactions can be another
mechanism for unsteady convection, which in turn can lead
to dopant stratification.

Future progress on this system may answer such questions
as, can this behavior be seen at different codimension-two
points, does oscillatory behavior only occur at codimension-
two points, and can the flow switch between more than two
patterns? Answers to these questions certainly warrant con-
tinued study in this fascinating phenomenon.
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FIG. 3. Schematic of the codimension-two point. The experi-
ment is usually performed at some point close to but not exactly at
the codimension-two point. Self-excited perturbations in the super-
critical region can cause the fluid to switch from one mode to an-
other.
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